Metabolic engineering--integrating methodologies of molecular breeding and bioprocess systems engineering.

نویسنده

  • Hiroshi Shimizu
چکیده

Metabolic engineering is an integrating methodology of analysis and synthesis for the improvement of flux distribution of metabolic pathways in complicated bioprocesses, which are highly multi-hierarchical systems to extend from macroscopic to microscopic levels. Recent progress in metabolic engineering methodologies to improve metabolic pathways in microorganisms was reviewed with many studies in this paper. Metabolic flux distribution was analyzed under different environmental conditions, using a metabolic reaction model. The physiological states of microorganisms were understood by interpreting metabolic flux analysis (MFA). This analysis was also used for development of process operation and control strategy. Cell capability to form a targeted product was analyzed with a metabolic reaction model and linear programming (LP). The use of a 13C-enriched carbon source and nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GCMS) analyses of intracellular and extracellular metabolites enabled determination of a metabolic flux distribution more accurately than the flux distribution determined only by the metabolic reaction model, which involves not only metabolite balances but also energy and redox balances. The comparison of metabolic flux distributions between before and after genetic modification of cells yielded information on the mechanism of regulation of metabolic flux in microorganisms. Finally, integration of bioinformatics and metabolic engineering is discussed, and cyclic modification of the complex bionetwork and process development were emphasized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laboratory of BioProcess Systems Engineering

Laboratory of BioProcess Systems Engineering (BPSE) has been organized by Prof. Kino-oka since April 2009. The laboratory mission is to bring a good fortune in human life through the elucidation and utilization of “bio-potential” by understanding sequential biological events (BioProcess) in the reaction field (Systems). The main stream in BPSE, as shown in Fig.1, is the bioprocess designs in st...

متن کامل

Lean-Proteome Strains – Next Step in Metabolic Engineering

Rapid development of high-throughput -omics (e.g., proteomics) and genetic engineering technologies together with an array of new metabolic modeling tools during this century has led to the emergence of new fields of biological research termed systems biology and synthetic biology. The successful exploitation of these developments is evidenced by the creation of increasing number of genetically...

متن کامل

Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine.

Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S...

متن کامل

Systems Biology Application in Research on Sustainable Utilization of Chinese Materia Medica Resources

DOI: This paper reviews the progress of systems biology applied to research on sustainable utilization of Chinese materia medica (CMM) resources in the following aspects: identification and evaluation of CMM resources, analysis of biosynthesis and their regulation of active ingredients in medicinal plants, metabolic engineering and synthetic biology research of medicinal plants, and molecular b...

متن کامل

Metabolic Engineering to Modify Flower Color

Thanks to the rapid progress in molecular biology of flavonoid biosynthesis and plant transformation, it has become feasible to modify the pathway and flower color through genetic engineering. One of the advantages of molecular breeding is that flower color can be specifically modified without changing the other characteristics of the targeted variety. Novel flower color varieties such as brick...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioscience and bioengineering

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2002